If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4z)^2=16z
We move all terms to the left:
(4z)^2-(16z)=0
a = 4; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*4}=\frac{0}{8} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*4}=\frac{32}{8} =4 $
| -1+9b=-9+8b | | 8(2x-6)=96 | | 3x+15+3x+15+90=180 | | 19z=-4 | | 18.95+88n=154.47 | | -5f−6=-6f−5 | | -13x^2-26x=3 | | -10+8h=10h+10 | | 4f-f=15 | | 48+56+3n=11n | | 8b=-16 | | 2(2x-8)=-7+3x | | 3y=2y−2 | | (1/2)(4x+2)=-5 | | -7x-2(-5x-16)=65 | | 9y=25+4y | | 7y=161 | | z−8=-3 | | 28=4(w-6)-8w | | 6d=-9+5d | | 9x-7+x+57=180 | | 4+9b=10b | | 7x÷3=25x | | 9x+48+10x+37=180 | | 154.47=18.95+88n | | -36x=143 | | b^2+6b-112=0 | | y/5+10=(-15) | | -1/3+5/6x+2=-1/2+1/6x | | -3/2+1/3(12x+9)=2/9(3/2x-6) | | -1/3+5/6x+2=-1/2+1/6 | | 40/50=1.26/x |